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The problem of exciton migration and trapping on a linear polymer is treated as a 
random walk on a one-dimensional lattice. The average number of steps required 
for a walker to be trapped is calculated when the probability of stepping to adjacent 
lattice sites is not symmetrical, and is found to be less than that calculated for a 
symmetrical walk. An asymmetrical stepping probability is shown to result from the 
thermal vibrations of the lattice. The magnitude of this effect on the exciton lifetime 
is estimated and found to be significant. 

KEY W O R D S :  trap-limited exciton lifetimes; asymmetrical random walks; lattice 
vibrations; displacement correlation functions; phonon-assisted exciton lifetime re- 
duction. 

1. I N T R O D U C T I O N  

A number  o f  physical and biological phenomena  can be explained on the basis o f  the 
t ransport  o f  excitation energy through an array o f  molecules. (1-4) Photosynthesis,  
for  example, involves the excitation o f  chlorophyll  molecules by visible light and the 
subsequent migrat ion o f  this excitation energy through the array o f  chlorophyll  
molecules to a center where it is trapped, and where it triggers a chemical reaction 
yielding oxygen and a carbohydrate  or sugar. (5) In  competi t ion with the removal  o f  
energy by this process is the reemission of  light by  the chlorophyll  molecule, that  is, 
fluorescence. The rate of  fluorescence is propor t ional  to the number  o f  molecules 
excited, or  excitons present. The decay rate o f  the fluorescence, when the irradiation 
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of the sample is interrupted, then gives the rate at which excitons are removed by 
trapping centers and fluorescence. If  the trapping is much more efficient than the 
fluorescence, the decay rate will be due almost entirely to the trapping of excitons. 
In such cases, the average length of time between the creation and trapping of an 
exciton can be determined experimentally. ~6~ 

The migration and trapping of an exciton can often be treated as a random walk 
on a periodic space lattice in which some of the lattice sites are trapsJ 7,s) In these 
cases, one assumes that the excitation can be created with equal probability at any 
nontrapping lattice site, and then calculates the average number of steps required 
for it to reach a trap for the first time. The lifetime of the exciton is then just this 
average number of steps times the time interval r between steps, which is assumed to 
be constant. 

Machine calculations o f  trap-limited exciton lifetimes have been made by 
Pearlstein Cg,z~ and Robinson(m; ten Bosch and Ruijgrok's 112) analytic results dis- 
agreed with these, a discrepancy resolved by KnoxJ 7) Montroll (s) has given an 
analytic treatment of random walks on lattices containing a periodic array of traps. 
He has also treated the case of randomly distributed traps and obtained exact results 
for the average lifetime in a one-dimensional systemJ TM 

Inherent in all of  these calculations is the assumption that steps to all nearest- 
neighbor lattice sites are equally probable, although it is known that the excitation trans- 
fer rate depends on certain angular factors and on the distance between the sites. (1,1~) 
The problem we shall consider is that of an exciton migrating by steps to nearest- 
neighbor sites on a linear polymer in which the distance between monomers, due to 
their thermal motion, is not constant. The probability of an exciton jumping to a 
neighboring site is greater, the smaller is the distance between the sites. Hence, if an 
exciton is created at a site which is closer, say, to the site on its right than to the site 
on its left, it will have a greater probability of jumping to the right (see Fig. 1). If, 
when it makes its next jump, the lattice motion has been such that the site to the 
right of its new position is again closer (see Fig. 1), it will again have a higher 
probability of jumping to the right. If  this situation tends to persist for a large number 
of steps, as one might expect if the time between jumps and the vibrational periods 
are comparable, the exciton will tend to be driven to the right. One would then expect 
the number of steps to reach a trap to be reduced from the situation in which a jump 
in either direction is equally probable. 

t=t'o 0 G'- "b 0 0 0 

t=to+r 0 0 ~'-~D 0 0 

t:to+Z~ o o o 6--~b o 

Fig. 1. Motion of an exciton on a vibrating linear chain. The more-probable 
direction in which the exciton will jump is indicated by the arrows. 
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Two questions should be resolved: (1) How much is the lifetime of an exciton 
on a linear chain reduced if the probability of  its moving in one direction is greater 
than in the other direction ? (2) Are the lattice vibrations such that motion of the 
exciton in one direction is consistently more probable for a nmnber of  steps at least 
of  the order of  the number of  steps required for it to be trapped ? The first question 
will be examined in Section 2, and the second in Section 3. It  will be shown in Section 4 
that the effect on the exciton lifetime can, indeed, be appreciable. 

2. A S Y M M E T R I C A L  R A N D O M  W A L K  

The formalism and notation in the following treatment of  the random walk is 
taken f rom Montroll. aS) A walker on the infinite one-dimensional lattice without 
traps of  Fig. 2 steps to the right with a probabi l i typ and to the left with a proabability 
q ----- 1 - -  p. The coefficient p of e i~ in the expression ( p d  ~ -~ qe -~ )  represents the 
probability of  the first step being to the right, while the coefficient q of e - ~  represents 
the probability of  the first step being to the left. The coefficient p2 of e 2~ in 
( p d  ~ Jr qe-i~) 2 represents the probability of a walker being at ! = 2 after two steps, 
the coefficient 2pq of e ~ the probability that he has returned to the origin, and the 
coefficient q2 of e -2~ the probability that he ends at l = - -2  after two steps. Generally, 
P~(l), the probability that the walker is at l after n steps, is the coefficient of  e +a~ in 
(pe i~' + qe-ir ~, and is given by 

P,~(I) = (1/2rr) (pe i4 q- qe-ie') '~ e -~e~ d,~ (1) 
- - r r  

since 

f 
qr t 

(1/27r) e - i (~-"  ,4 d 4 = am,~, (2) 
- -97  

The generating function of all walks which end at lattice point l independently 
of  the number of  steps n is defined to be 

v(z, 0 = ~ z~P,~(O 
'/,Z = 0  

This integral is easily evaluated 

1 z n (pe i'~ -~- qe-i~') n e -i~r d e  
2~ •=0 -~ 

1 f "  e -it~ d 4 
2re _~ 1 - -  z ( p d  ~ q- qe -~ )  (3) 

by setting s = e • accordingly, as l is negative 

o o o  0 

-3 

Fig, 2. 

0 0 0 0 0 0 - . .  

- 2  -1 0 I 2 5 

An infinite one-dimensional lattice without defects. 
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or positive, to obtain a contour  integrat ion a round  the unit  circle [ s ] = 1.Application 
of  the residue theorem then gives 

U(z, l) = [1 - -  (1 - -  4z2pq)X/2] z 1 
-~$ J (1 - -  4z2pq) 1/2' 

[1 - -  (1 - 4z2pq)Z/~] -~ 1 
L 2-z/~ J (1 - -  4z2pq) 1/2' 

l ~ > 0  

l ~ O  

(4) 

This is the generating funct ion of  r a n d o m  walks f rom 0 to 1 on an infinite one- 
dimensional  lattice without  defects. The generating funct ion for  walks f rom 0 to l 
on a ring of  N points (that is, a chain of  N points with periodic boundary  conditions), 
is equivalent to the sum of  the generating functions for  all those walks on an infinite 
chain which represent  walks f rom 0 to l, f rom 0 to 1 -k N, etc., as well as f rom 0 to 
l -  N, l -  2N, etc. Hence, 

UN(z, l) = U(z, l) + U(z, I -k N)  -k U(z, l + 2N) 

+ "'" -k U(z, l - -  N)  -k U(z, l --  2N) -k "'" (5) 

Using Eq. (4), we obtain 

where 

1 [ 
UN(z' /)  = (1 - -  4z2pq)Z/2 1 - -  x ~r 

1 y-* 
- -  (1 - -  4z2pq) ~/2 [ 1 : -y~r  

], I o 
- - ' +  l _ yZe 

xN+~ ] 
- - +  l _ x ~ ,  l ~ O  

(6) 

1 - -  ( 1  - -  4z2pq) a/2 1 - -  ( 1  - -  4z2pq) ~/2 ( 7 )  

x = 2zq ' Y = 2zp 

Let us now consider a chain in which one of  the N lattice sites, say lz, is a trap, 
and the walker starts at l0 =fi/1. The probabi l i ty  that  the walker  not  be t rapped on 
the nth step is 

Y, f (O 
l=/= 11 

where f~(1) is the probabi l i ty  that  the walker is at  1 after n steps. The probabi l i ty  
that  he is t rapped on the nth step is then 

[ f ~ - ~ ( l ) - - f ~ ( l ) ]  

and the average number  of  steps required for  t rapping is 

= s n 2 [ f~-z( l ) - - f~(1) ]  (8) 
n=l ~ e~ 11 
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In terms of  the generating function defined by 

rN(z ,  l) = ~ z " f  ~(l) 
n=O 

we have 

Since 

we may write 

and, therefore, 
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(9) 

8 

r l l  Z = t  

~ n=O n~O l 

= z . . . .  ( 1 1 )  
1 z n=O 

(1 - z )  ~ F N ( z ,  l )  = 1 - -  (1 - -  z ) F N ( z ,  l l )  (12) 

Now,  

Po(l) = S~,o (14) 

P.q )  = pe ._~q  - 1) + qe._x(l  + 1) (15) 

Multiplying this equation by z n and summing f rom n = 1 to 0% we obtain 

U(z, l) - -  8~.0 = pzU(z ,  l - -  1) + qzU(z,  l + 1) (16) 

where U(z, l) is defined by Eq. (3). The generating function for  walks on an N-point  
ring then satisfies the difference equation 

UN(Z, l) - -  pzUN(z ,  I - -  1) - -  qzU~v(z, l q- 1) = 8~,o (17) 

fo(l) = Sz,zo 

f,~(1) = pf,~_z(l - -  I) q- qf,~_i(l q- 1); 

(18)  

l =?~ l l ,  lz • 1 (19) 

and 

The generating function Fn(z ,  l) can be obtained from the generating function of  
r andom walks starting f rom the origin on a perfect lattice. We note that  

8 
= Fz [(1 - -  z)FN(z, /0]~=1 (13) 
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and, since the walker cannot escape from site l l ,  

f~(ll) = pf~- ,( l l  - -  1) q- qf~-l( lz  + 1) q- f~-,(ll) (20) 

Then, for any l, 

f,~(l) = P f , - l ( [  - -  1)[1 - -  81_1,•1 ] "~ qf~.-l(l + 1)[1 -- 82+l&] +f,~--l(l) 8Z& (21) 

Multiplying this equation by z ~ and summing from n = 1 to o% we find 

F~v(z, l) - -  pzFzr l - -  1) -- qzFN(z, l + 1) 

= z[a , .~  1 - pa~_~.~l - qs~+, . , , ]  FN(z, ll) + a~.~o 

= Q(z, l) (22) 

The generating function U~v(z, l) is the Green's function required for the solution of 
this inhomogeneous equation: 

S N ( z ,  0 

= Z UN(z, l - r) Q(z, r) 

= u , ~ ( z ,  1 - to) 

4- [zUN(z , 1 - -  ll) - -  zpU~v(z, l - -  l, - -  1) -- zqUN(z, I - -  11 q- 1)1FN(z, 11) 

= U N ( Z  , l - -  10) - ~  [ Z U N ( Z  , l - -  l l )  - -  U i v ( Z  , l - -  /1) -~- a l , ,  1] FN( z, ll) 

= U~r l - -  lo) q- [(z -- 1) UN(Z, I - -  h) q- 8~.,~1 FN(Z,/1) (23) 

We obtain, when l = l l ,  

FN(Z, h) = UN(z, la - -  /o)/(1 - -  z) UN(z, 0) (24) 

Substituting this into Eq. (13) yields 

r u ~ , ( z ,  11 - lo) ] 
(25 )  

This is the average number of  steps required for a walker starting at 10 to be trapped 
at/1 on a ring of N points. When the starting point can, with equal probability, be 
any nontrapping point, we must average fi over all possible starting points to get 

1 ~ [ UN(z, I I - - l o )  ] = _1 a [ ~ a o U N ( z ,  l x - - l o ) .  - -  1] 
N - -  1 E -~z ( UN(z, O) , N 1 az UN(z, O) go=C= ~z z=l z=1 

1 ~ [ 1 ] 
(26) 

N -  1 az [ UN(z, 0)(1 -- z)]z-1- 
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From Eq. (6), 

1 [1 -- (xy)Nl 
UN(z, O) = -(-(_ 4z2pq)~/2 (1 -- x~)(1 --  y~) 

where x and y are defined in Eq. (7). Let I P -- q [ = ~; then, Eq. (26) becomes 

1 [ N 2 N 2 N ] 
S{[(1 + ~)/(1 - -  8)1 s - -  1} 2~ 2 ]  

N ~ 1 [[c~ -~3) 1 ] 
N -  1 2N~ N~-J 

o r  

(27) 

(28) 

N ~ 1 
N -  1 2N8 

62 84 r [ \ ]  (1/3) + (6~/S) + (64/9) § +- j  + + ) j  
2NZ[1 + (62/3) + (84/5) + -.-] 

(29) 

where L(x)=-coth  x -  (I/x), the Langevin function, (16) goes to zero as x/3 as x 
approaches zero. In the limit 6 -+ 0, then, 

N 3 (1 1 ) N(N + 1) 
V T - - U - - 1  6 f f f f s  6 

which agrees with the result for a symmetrical walk obtained by Montro11. cs~ For 6 
not zero, but much less than one, we have 

N 3 [ 1 L(N6)- -  1 ~ (30) 

while if N tanh -1 8 ~> 2, or, equivalently, since tanh -~ 3 >~ 6, N3 > 2, then 
coth(N(N tanh-16) = 1 within 5 %. Equation (28) then becomes 

N3 1 ( 1 .  1 ) 
17 m N ~  2N~  ~ 3  (31) 

This last equation applies even when 6 is not small. In the limit 6 --+ 1, we get n ~ N/2. 
In this case, the walker steps always in one direction, and N/2 is just the average 
number of lattice sites between the site on which the walker starts and the trap. 

The function y = (1/2N6)L(N6) and y = (1/2N6)[1 -- (1/N6)] are plotted in 
Fig. 3. The reduction in the average number of steps is related to the difference between 
these curves and the line y = 1/6. It is clear from this graph that a significant reduction 
can be obtained provided N6 is large enough. Moreover, we see that Eq. (31) is indeed 
a good approximation when N8 ~> 3.0. 

The above analysis has been concerned with a walker on a ring of N lattice points 
of  which one is a trap. However, the problem of a walker on a one-dimensional chain 
with traps at l = lz, 12 ,..., lr can be reduced to that of a walker on a ring with a 
single trap. For, if the walker starts between traps lj and/J+z, the number of points 
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I 

~  ,/y=+ 

~ 
~ F \ 

o.,o) p'-~ -- 2~ ~'- -a' \ 

oogk ~ I I J _ L 
0 LO 2.0 3.0 4.0 

N 8 ~  

Fig. 3. The functions (1/2N8) L(N3) and (1/2N~)[1 -- (l/N3)]. 

in the interval  is sj = l~+~ - -  l~-, which is the same as a walk on a ring of  sj points, 
one being a trap. When  the traps are distributed periodically with per iod s, then the 
average number  of  steps to be t rapped is given by Eq. (28) with s replacing N. 

3. L A T T I C E  D Y N A M I C S  

In the development  of  Sect ion  2, it is assumed that  the exciton jumping  proba-  
bilities p and q = 1 - -  p were constant  over  the lifetime of  the exciton. However ,  i f p  
and q are to be related to the instantaneous posit ion of  the exciton site and its nearest  
neighbors when the j u m p  takes place, they must  be functions of  lattice site and of  
time. Hence, for  the t rea tment  in Section 2 to be applicable, conditions must  be found 
such that  p and q do not  vary much  over the exciton lifetime and f rom site to site. 

In  F6rster ' s  weak coupled model,  the transit ion rate of  an exciton varies as 1 /R  ~, 
where R is the distance between molecules. The distance between lattice sites l and l + 1 
is uz+l(t) - -  u~(t) § a, where a is the lattice constant.  The ratio of  the probabi l i ty  of  a 
transit ion f rom site l to site / + 1 to the probabi l i ty  of  a transit ion f rom site I to site 
l 1 is then 

[u~(t) - -  u~_l(t)  + al e ~ 1 - -  6 [u~+l(t) + u~_l(t)  - -  2u~(t)] (32) 
[u~+l(t) - -  uz(t)  + a] 6 a 

The stepping probabili t ies o f  our  r a n d o m  walker when at t h e / t h  site at t ime t, pz( t )  
and qz(t) = 1 - -  p~(t),  must  have this ratio. Tha t  is, 

pt ( t )  ~ �89 - -  (3/a)[u~+l(t) + u~_l(t) - -  2u~(t)]} (33) 
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and we take this to be exact, so that 

p~(t) = �89 - -  (3/a)At(t)],  q~(t) = -21-[1 + (3/a)At(t)] (34) 

where 
At(t) = u,+l(t) + Uz-l(/) - -  2u~(t) (35) 

We must  now find conditions under  which the quanti ty Ag(nr) is, on the average, 
independent  of  lattice site l and step number  n, with z being the time interval between 
steps. That  is, given, at the time the exciton is created, that  the lattice is in such a 
condit ion that  a step in one direction is more  probable  than in the other  ([ A0(0)[ > 0), 
we want to know whether this situation persists on the average after n steps at different 
lattice sites. The quanti ty of  interest is then related to the correlation funct ion 
(At( t )  Ao(0)), where the brackets indicate an ensemble average. We take for  our  
average At(t) 

At(t)  ~ (At(t)Ao(O))/(Ao~(O)) ~/2 (36) 

and insert this in Eq. (34) to get 

ff~(nr) = �89 + (3/a)J~(nr)] ,  gt~(nr) = �89 - - (3 /a)A~(nr) ]  (37) 

This gives as initial stepping probabilities 

/3o(0) = �89 + (3/a)(Ao2(O))l/q, ~7o(0) = �89 - -  (3/a)(do2(O))Z/~ ] (38) 

It  has been assumed here that/70(0 ) > ~0(0), but  this is no restriction, since it was 
shown in Section 2 that  the lifetime of  the walker depends only on 8 = ] p - -  q [. 

The quanti ty At(t) can be calculated using standard lattice-dynamics theory. 
F rom Eq. (35) and the translational invariance of  the lattice we obtain 

(A~(t) Ao(0)) = (u~+~(t) Uo(0)) - -  4(u~+l(t) Uo(0)) 
+ 6(u~(t)Uo(0)) - -  4(u~_l(t ) Uo(0)) + (ut_~(t)Uo(0)) (39) 

The displacement-displacement correlation function is given in terms of  the phonon  
Green's  function ~lr) as follows: 

where 

hi (~  [Gz(co + ie) --  Gz(w --  iE)] 
(ul(t)  u0(0)) = ----  Lim j (end'/kr - -  1) e ~  /k Te--~wt dt 

277 ~-->0 + --:o 

Using the equation 

1 e iq$a 
Gz(z) N M  ~ z 2 - -  ~ 2  

e = 4-~ 'a(x)  Lim x2 + d 
e~O -~ 

27/" 
N M  ~ ei~ sgn w 8(oJ a - -  eoq ~) 

one obtains 

Lim i[Gz(~o + ie) - -  Gz(co - -  ie)] = - -  
e-*0 + 

(40) 

(41) 

(42) 
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Performing the integral over ~o, we then have 

]i eiq~a[em%/kTe-i% ~ -? e% ~] 
(u,(t) u0(O)) = 2 N M  y'  r -- 1] (43) 

q 

Taking the real part of this equation and changing the sum over all q to one over 
only positive values of q gives 

h cos(qla) cos(oJ~t) coth ho)q (44) 
(u~(t)uo(O)) = N M  ~ 2kT  q>/O COg 

Substituting this result into Eq. (39) and using the dispersion relation for a linear 
chain with monomers of mass M and monomer-monomer force constant o~ 

gives 

Richard A.  Elliott, Katja Lakatos, and Robert S. Knox 

Then, 

16h cos(qla) cos(o)qt) coth hcoq (46) (A~(t) Ao(O)) = NMo) 4 ~ oJq 3 2kT  
q>~o 

where ~o~ = 2(o~/M)I/2 is the maximum frequency of the lattice. We transform the 
sum over q to an integral over frequencies using the lattice density of states: 

1 f~mD(o))f[q(co) ] 2 f (q )  = -~ do) (47) 
q>/o 

with 

D(o))  ~ N a  ] dq l 2N 
~ ' -  I / ~  = qT(OJm 2 - -  (02) 1/2 

16h co 3 cos[q(co) la] cos(o)t) ho~ 
~'~ ~ ---- ~ 7 ~  coth 2--k--T dm (49) (/Iz(t) A~ -- M~r~ * f0 

This integral can be performed analytically for l = 0 if a high-temperature expansion 
is made: 

coth(ho)/2kT) ~ kT/ho) (50) 

This approximation is valid if k T  >~ ho)m, which will be justified later for the physical 
systems of interest here. Performing the change of variables x = ~o/~% gives 

16kT fl x 2 cos(comtx) 
(A~176 = MTro~ 2 o ( 1 -  x2) 1/2 dx (51) 

This is just an integral representation of the Bessel functions: 

4 k T  [ J o ( % J ) -  J~(~t) ]  (52) (do(t) Ao(0)) = M--~ ~ 

(48) 

(45) c% 2 = (4a/M) sin2(qa/2) 
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The correlation function for I IF > 0 can now be found using the equation of 
motion satisfied by A~(t), 

d ~ 
M -d~ (~ ~(t) Ao(O)) = ~[(A ~+l(t) 20(0)) 

- -  2(A~(t)  Ao(0))  + (Az_a(t) Ao(0))]  (53) 

and the Bessel function recursion relation 

4J~(z) : J~+2(z) --  2J~(z) + J,~_2(z) (54) 

Using Eq. (53) to express each correlation function {A~+z(t)A0(0)) in terms of the 
correlation functions (A~(t)Ao(O)) and (A~_l(t)Ao(O)) and noting that Az(t)---- 
A~( t ) ,  it is easy to deduce that, in general, 

(At(t) Ao(0 )) ----- (2kT/Mcomz)[--J~z+2(co~t) 4- 2Jz(cOmt) --  J2t_~(co~t)] (55) 

In particular, 
<A02(0)> = 4k T/Mo),, 2 = k T/~x (56) 

and the quantity defined in Eq. (36) is then 

[ k T  11I 2 
dz(t) -- L ~ r ~ ]  [--J2z§176 4- 2Jz(coj) --  J~z_~(co~t)] (57) 

If  we consider asymptotically long times, 

[ 2 k T  11/~ cos[~,~t - (~/4)] (58) 
d~(t) ~ 4(--1) z L - ~ - g ~ - j 2  _ I (Troo~t)~/2 

and for the time being consider the special case r = re/co .... we have 

d~(n- r )  ~ ,  4(--1)~+" [ k r  ]a/z (59) 
~-~V/~ L Moore2 d 

Since once can reach a lattice site with l even (odd) only by an even (odd) number 
of steps, 

4 k T  ]1/2 
d~(nr) ~ [ (60) 

~ k moom~ 

The ratio of this to zio(0 ) is 

d~(n-r) 2 
(61) 

We note that this is always positive and independent of  1, and, moreover, varies 
slowly with the number of steps n. Also, ,0,(nr) will always be greater (less) than 
~,(m-) if P0(0) is greater (less) than 7/o(0 ). We conclude that, provided the time interval 

8zz/z/2-3 
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between steps ~- is approximately equal to 7r/o~,~ (or any odd multiple of this quantity), 
it is reasonable to take for ~ = I P -- q I in Section 2 some fraction of l p0(0) -- ~0(0)l = 
3Zi0(0)/a ~ 3 o . The fraction will, of  course, depend on the average lifetime of the 
exciton. 

4. E X C I T O N  LIFETIMES 

If  the A~(n~) at each step arc given equal weight in the calculation of the average 3, 
we find w h e n ~ =  1, 6 = 3 o; w h e n ~ > l ,  

(62) 

For values of r~ ~> 6, this can be approximated by 

~ 4a0/TrV~ (63) 

to better than 2% accuracy. We can substitute for ~ from Eq. (28) to obtain the 
following equation for 3: 

43~ (64) 
--- r r { [ N 3 / ( N  - -  1)][1/2N3][coth(N tanh-13) -- (1/N~)]}z/z 

This allows us to find ~ in terms of N and 30, which, in turn, determines the lifetime 
of the exciton rT~- by using either Eq. (28) or Eq. (63). Equation (64) can be simplified 
by using Eq. (31) instead of Eq. (28) if N3 > 2. This gives 

43~ (65) 
= r r { [ N 3 / ( N -  1)1(1/2N3)[1 --(1/N3)]}a/~ 

The use of this approximate formula will be justified below, where we will show that 
N3 is indeed greater than 2. The effect of this asymmetry on the exciton lifetime will 
be postponed to that time. 

The above discussion assumed that r ~ 7r/co~. If, instead, -r is some other odd 
multiple ofTr /co , ,~ ,  say 

= (2~ + 1) ~ / o ~ ,  ~ = 1, 2, 3,... (66) 

then the average asymmetry will be 

_ 4So 1 
7r ~r (2v -l- 1) a/2 (67) 

rather than that of Eq. (63). 
The situation when ~- is an even multiple of 7r/oJ~, say, r ~ 2 w / c o ~ ,  would 

seem to give a lengthening of the lifetime, for, referring to Eq. (58), we see that 
Ziz(m- ) then changes sign with each step. That is, the walker would find the probability 



The Effect of Lattice Vibrations on Trap-Limited Exciton Lifetimes 265 

of a step to the right to be greater at one step, and, at the next step, the probability 
of a step to the left would be greater. This would tend to keep the walker near his 
starting point. This situation can be treated within the formalism of Section 2 (see 
the appendix). The absolute value of the average asymmetry will, in this case, be 

g _  4g o 1 (68) 
,~ v'~  (2~)1/2 

Putting this into Eq. (A.6) and solving for r~, we get 

N(N ~- 1) 8go ~ (69) 
r7 ~ 6 + vzr 2 

This means that the average number of steps to be trapped is increased by 88o~/VTr 2, 
which is negligible except for small N. 

When the time interval between steps is not exactly equal to zr divided by the 
maximum lattice frequency ~om, the exciton gets out of phase with the lattice vibrations 
after some number of steps, with a consequent reduction of  the average asymmetry. 
In this case, when r = (~r + e)/co~, we have from Eq. (58) 

4 [ 2kT ]1/2 cos [nE--~r  ] A~(n-r) 

- -  23~ [cos(he) -t- sin(n,)] (70) 
[n~(,~ + ,)11/2 

and the average asymmetry would be 

3o t ~1 2[cos(n') + sin(n')] I 
= ~-  [nTr(Tr @ •)11/2 ~- 1 (71) 

[ n = l  

If one could vary ~-, or, equivalently, w,~, and then measured the exicton lifetime 
and plotted this against rrw~, the curve would have a minimum at oJm~" = ~. The 
width of this dip would depend on how quickly the exciton gets out of phase with the 
lattice vibrations. The width at half-depth can be estimated as follows. For given 
g0 and N, the minimum value of the lifetime is Z~-, with 17 given by either Eq. (28) 
or by the approximate formulas of Eqs. (30) or (31). One can find from these equations 
or from these graphs plotted in Fig. 3 that value of N3, say, N~', which would give 
an tT that would give one half the reduction in the lifetime. These g' and ~', when 
substituted in Eq. (71), determine e, that is, the width of the dip in the curve. 

We will now estimate the magnitude of g0 and from this determine the reduction 
in the lifetime of the exciton that one could expect. To make this estimate, we require 
typical values of the lattice parameters and the time interval between steps, r. Accord- 
ing to Pearlstein, (6) it may be possible to make lifetime measurements by measuring 
the decay rate of donor fluorescence in linear polymers. We take for a typical 
value of the monomer mass 200 proton masses. The exciton transfer rate ~1> can be as 
low as 101~ sec -a and as high as 10 lz sec -1, with ~r • 10 n sec -~ being a typical value, 
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that is, ~ ~ 7r • 10 -12 sec. Earlier, we found that for an average asymmetry in 
the stepping probabilities to exist, the maximum lattice frequency ~o~ had to be 
approximately an odd multiple of ~-/~-, with the largest asymmetry occurring for 
oJ,~ ~ rr/~-. This means that the force constant would be 

o~ = MoJm2/4 = 84 erg/cm ~ (72) 

I f  we take for the temperature T = 300~ we find from Eq. (56) that 

A0(0 ) = (Ao~(0))l/~ = (kT/o@/2 = 2.2 h (73) 

[the high-temperature expansion used to obtain Eq. (48) required k T  >~ hoJm, that is, 
when wm = 10ZZsec -1, T>~ 8~ which is certainly satisfied]. The monomer -  
monomer  spacing, the lattice constant, is of  the order of  7 A, so that 

3o ~ 3A0(0)/a = 0.94 (74) 

This can be used in Eq. (65) to obtain, after multiplying through by N, 

N3 = 1.2 (N 1) 2N3 1 - - ~  ; N > ~ 3  

which simplifies to 

N3 = 2 . 8 8 [ ( N -  1)/N] + 1 

(75) 

(76) 

The minimum value of N3 occurs when N = 3, in which case N3 = 2.92, so that the 
approximate formulas of  Eqs. (31), (63) ,and (69) are valid to within 1%. (When 
N = 2, ~7 = 1 and 3 = 30 = 0.94, whence N3 = 1.88. However, this case is of  no 
interest, as the walker is always trapped on the first step whether or not the stepping 
probabilities are symmetrical.) The maximum value of N3 is 3.88. For very large N, 
N3 ~ 3.88 and N~/(N --  1) ~ N 2 in Eq. (31), and, therefore, 

N2 (t 1 
t7 3.88, 

= 0.0955N ~ ; large N (77) 

For a symmetrical walk and large N, one has 

t~sym ~ N2/6 = 0.167N 2 (78) 

The lifetime is thus reduced by 43 % when N is large and 30 = 0.94. The reduction 
would, of course, be less if 3 o were smaller. When N = 30, Eqs. (76) and (31) give a 
percentage reduction of the lifetime of 42 %. For smaller values of  N, say, N = 6, 
we find a reduction of 36 %. We see that the reduction in the lifetime is not strongly 
dependent on N, nor, for a periodic distribution of traps, on the period s. 

The width of the dip in the curve of lifetime versus o),,'r can be calculated accord- 
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Table I 

N (a/a~y~)~ 

6 0.64 --0.050; 0.690 
12 0.60 --0.016; 0.177 
30 0.58 --0.003; 0.032 

I I  IIN 

ing to the prescription following Eq. (71). When ~ ~ 6, the sum in Eq. (71) can be 
approximated by an integral to give 

3' = 2 3o f~'-I dn cos(ne) + sin(n~) 

= 2 ~ 30 {C[E(~' --  1)]1/~ + S[~(g' -- 1)]z/~} (79) 
a'[~(~ + ~)1~I~ 

where C(x) and S(x) are the Fresnel integrals. (18) 
Equation (79) can then be solved numerically for ~. Table I lists the values of E 

which give one half of the maximum reduction in the lifetime for N ~ 6, 12, and 30. 
The fractional reduction in the lifetime is plotted as a function of oJm~- in Fig. 4. 
This graph is meant only to show the width of  the dip in the lifetime curve, and not its 
detailed shape. It is clear from Table I and Fig. 4 that the dip in the curve is highly 
asymmetrical. This is due to the fact that there are no lattice frequencies greater than 

QO 

~ 0 . 2  

z 
~ 

~= Q5 

/ /  7 "  
/ / 

/ ;, 

/ / ,, 
/ " / 
/ / /  

j l  
t l o /  

~ N =  :50 
- - - - N =  12 
. . . . . . .  N = B 

0 . 7 -  

_ I I I I 
1.0 2.0 5.0 7 4 .0  5.0 

~mT 

Fig. 4. Lifetime reduction as a function of maximum lattice frequency times the time interval 
between steps for N = 6, 12, and 30. These curves are meant to indicate the half-width of  the 
depression, and not the detailed line shape. 
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%,t, but many that are smaller. The width of the depression, about e%r = (2v -{- 1)~r, 
can be calculated in a similar manner. The resulting curves would be similar to those 
in Fig. 4. 

5. C O N C L U S I O N  

We have seen that lattice vibrations can give rise to an asymmetry in the 
stepping probabilities of the random walk representing exciton motion on a linear 
polymer, and that this asymmetry can cause a reduction in the exciton lifetime 
provided ~o~z is approximately an odd multiple of rr. For  typical lattice parameters, 
the reduction is of the order of 40 ~o for w~z ~ rr, and for moderate trap concen- 
trations (between 5 ~ and 20 ~),  wmz could be as much as about 6 ~ greater than rr 
and still give a reduction of the order of 20 ~ in the lifetime. It should be noted that 
the average asymmetry in the stepping probabilities 3 varies as TZ# and, while this 
is not a strong temperature dependence, it can be experimentally controlled. Studies of 
the decay rate of donor fluorescence in poly-L-tyrosine and related polypeptides 
may prove experimental verification of this theory. 

Work on extending this analysis to higher dimensions is in progress. 

A P P E N D I X  

Let the probability of a step to the right be p if the step number is odd and q if 
the step number is even. Then the probability of a walker being at site l after 2n steps is 

1 f~ dd~ [(pc ir + qe-ir i~ + pe-i~)]" (A.1) P~(1) = 2~r _~ 

and, after 2n + 1 steps, 

1 S de  [(pc i* + qe-i*)(qe i~ + pe-i*)] ~ (pal r + qe -i~) P2'/>+-1(/) = ~ --rr (A.2) 

We obtain, in the same way as in Section 2, the generating function evahated at 
l = 0 ,  

1 [ 1 + x  N 
U~N(z, O) (A.3) ?{[p2 + q2 _ (1/z2)12 _ 4p~q~}X/2 ~ 1 --  x ~ } 

(1 + x zN+I) + z(1 + x) x N 
U 2 g + l ( Z  , 0 )  = Z2{[p2 @ q2 __ (1/_72)12 - -  4p2q2}1/2 (1 - -  x 2N+1) (A.4) 

where 

x = (--1/2pq)(p ~ + q2 _(1 /z  2) + {[p2 + q~ _ (1/z~)]2 _ 4p2q2}l/z) (A.5) 
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The average n u m b e r  of steps to be trapped is then [see Eq. (26)], 

1 ~ [ 1 1 /7 

N ~ -  N + 5N~ 2 
= N even 

6 ( U - -  1 ) ( 1 - - 3 2  ) ' 

N ~ - -  N 6- 8N~ 2 
= N odd 

6 ( N - -  1 ) ( 1 - - 3 2  ) ' 
(A.6) 
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